

Therapeutic drug monitoring: a real need

Therapeutic drug monitoring is being increasingly adopted to try to optimize patients outcomes, particularly during maintenance treatment.⁴¹

Correlation between DL/ADA levels and clinical response^{3,27,28,33,37}

Drug and anti-drug antibodies levels strongly correlate with clinical response Positive antibodies to TNF inhibitors correlate to null or sub-therapeutic levels of the drug and poor clinical response

Therapeutic levels of TNF inhibitors correlate to low or null titer of anti-drug antibodies and good or moderate clinical response

Clinical Consequences

Testing for drug levels and immunogenicity

Easy-to-use ELISA kits for routine use in clinical laboratories.

Quantitative
determination of
drug levels and antidrug antibodies
levels for the main
biological treatments
in different therapy
areas

Optimized methodology

- Multiple configurations. Removable strips
- Manual or automated mode
- Quick procedure: 2 hr 30 min
- Microplate precoated and ready-to-use reagents

High quality for reliable results

- Highly qualified professionals
- Supported by a large number of peer-reviewed articles
- · High specificity and sensitivity
- Easy data interpretation

Simple Procedure

Quick procedure: 2 hours 30 minutes
Hands-on time: 30 minutes
4 simple steps

Algorithm for Patient Management

	Good Clinical Response			
Sub-therapeutic drug level			Drug level in therapeutic range	Drug level in therapeutic range
Negative for anti-drug antibodies	Positive for anti-drug antibodies	High titer of anti-drug antibodies	Negative for anti-drug antibodies	Negative for anti-drug antibodies
Drug is rapidly cleared. Consider adjusting dosage and/or frequency of administration	Secondary Failure Consider switching to another anti-TNF drug	Risk of infusion reaction	Primary Failure Optimal therapeutic target may not be TNFα. Consider switching to other non anti-TNF drug	Adequate response Consider lowering dosage and/ or frequency of administration

Illustrative internal algorithm for patient management using drug levels and immunogenicity testing. Not for use as sole input in clinical decisions. Based on published literature 1,3,5,36,39

Main benefits of therapeutic drug monitoring

By providing TDM tools, clinicians may improve patient treatment strategy, reducing the risk of inadequate treatments, inappropriate dosages and side effects. ^{2,31,35,36,40,42}

It is widely accepted that there is a correlation between drug levels and therapeutic response. In consequence, drug monitoring and, if appropriate, tests for antibodies, may provide a more accurate analysis and help to adjust dosage in a personalized therapy strategy.^{7,35,42}

TDM may shed light on the main situations encountered in the clinical practice: primary treatment failure, inadequate treatment response, adverse reaction to the injection, or secondary loss of response.^{31,36,40,42}

Working together to administer the proper dose for the optimal treatment, resulting in efficient use of money^{15,30,32,34,38}

A lack of information about serum drug levels and ADA can lead to non-optimal clinical treatment decisions and lead to unnecessary costs.¹⁵

In consequence, a test-based strategy with TDM of anti-TNF is more cost-effective than an empirical strategy in both IBD and RA patients, with no negative impact on efficacy. 30,34,38

TDM should be taken into consideration by physicians and healthcare authorities to guide decision-making in clinical practice and to reduce the costs of healthcare.³⁸

Main peer-reviewed articles using Promonitor kits

- Pascual-Salcedo D, et al. Influence of immunogenicity on the efficacy of long-term treatment with infliximab in rheumatoid arthritis. Rheumatology 2011; 50:1445-1452.
- Plasencia C, et al. Influence of immunogenicity on the efficacy of longterm treatment of spondyloarthritis with infliximab. Ann Rheum Dis. 2012;71(12):1955-60.
- Rosas J, et al. Clinical relevance of monitoring serum levels of adalimumab in patients with rheumatoid arthritis in daily practice. Clin Exp Rheumatol. 2014;32(6):942-8.
- 4. Sanmarti R, et al. Towards optimal cut-off trough levels of adalimumab and etanercept for a good therapeutic response in rheumatoid arthritis. Results of the INMUNOREMAR study. Ann Rheum Dis. 2015;74(8):e42.
- Jani M, et al. Clinical utility of random anti-tumour necrosis factor drug testing and measurement of anti-drug antibodies on longterm treatment response in rheumatoid arthritis. Lancet. 2015;385 Suppl 1:S48.
- Chen DY, et al. Drug trough levels predict therapeutic responses to dose reduction of adalimumab for rheumatoid arthritis patients during 24 weeks of follow-up. Rheumatology (Oxford). 2016 ;55(1):143-8.
- Chen DY, et al. Immunogenicity, drug trough levels and therapeutic response in patients with rheumatoid arthritis or ankylosing spondylitis after 24-week golimumab treatment. Ann Rheum Dis. 2015;74(12):2261-4.
- Schmitz EM, et al. Therapeutic drug monitoring of infliximab: performance evaluation of three commercial ELISA kits. Clin Chem Lab Med. 2016;54(7):1211-9.
- 9. Llinares-Tello F, et al. Analytical and clinical evaluation of a new immunoassay for therapeutic drug monitoring of etanercept. Clin Chem Lab Med. 2015;53(10):e279-82.
- Valor L, et al. Investigating the link between disease activity and infliximab serum levels in rheumatoid arthritis patients. Clin Exp Rheumatol. 2015;33(6):805-11.
- 11. Martin S, et al. Comparison study of two commercially available methods for the determination of golimumab and anti-golimumab antibody levels in patients with rheumatic diseases. Clin Chem Lab Med. 2015;53(11):e297-9.
- 12. Zisapel M, et al. Prevalence of TNF- α blocker immunogenicity in psoriatic arthritis. J Rheumatol. 2015;42(1):73-8.
- 13. Almirall M, et al. Drug levels, immunogenicity and assessment of active sacroiliitis in patients with axial spondyloarthritis under biologic tapering strategy. Rheumatol Int. 2016;36(4):575-8.
- 14. Sieczkowska J, et al. Switching Between Infliximab Originator and Biosimilar in Paediatric Patients with Inflammatory Bowel Disease. Preliminary Observations. J Crohns Colitis. 2016;10(2):127-32.
- 15. Laine J, et al. Cost-effectiveness of routine measuring of serum drug concentrations and anti-drug antibodies in treatment of rheumatoid arthritis patients with TNF- α blockers. Biologics. 2016;10:67-73.
- Elberdín L, et al. Positive correlation between etanercept concentration and the decrease in Psoriasis Area and Severity Index scale value. Int J Clin Pharm. 2016;38(5):1142-8.
- 17. Marini JC, et al. Comparisons of serum infliximab and antibodiesto-infliximab tests used in inflammatory bowel disease clinical trials of Remicade®. AAPS J. 2017;19(1):161-171.
- 18. Ghia C, et al. Analytical and Clinical Evaluation of an Immunoassay for Estimating Immunogenicity of Infliximab and Etanercept in Indian Population. J Assoc Physicians India. 2016;64(9):14-17.
- Chimenti MS, et al. Long-term treatment with adalimumab in psoriatic arthritis: serum adalimumab concentration, immunogenicity and the link with clinical response. J Int Med Res. 2016;44(1 suppl):48-52.
- 20. Burmester GR, et al. Low immunogenicity of tocilizumab in patients with rheumatoid arthritis. Ann Rheum Dis. 2017;76(6):1078-1085.
- Ruiz-Argüello MB, et al. Antibodies to infliximab in Remicadetreated rheumatic patients show identical reactivity towards biosimilars. Ann Rheum Dis. 2016;75(9):1693-6.
- Cordero-Coma M, et al. Adalimumab for Treatment of Noninfectious Uveitis: Immunogenicity and Clinical Relevance of Measuring Serum Drug Levels and Antidrug Antibodies. Ophthalmology. 2016;123(12):2618-2625.
- 23. Manriquez J, et al. Determination of adalimumab and etanercept trough levels and drug antibodies in long-term psoriasis treatment: a single-centre cohort study. Clin Exp Dermatol. 2017;42(1):14-20.

- 24. Ruiz-Argüello MB, et al. Infliximab therapeutic drug monitoring test validated for measuring CT-P13 and SB2 biosimilars. J Crohns Colitis 2017. 2016;75:1693-6
- 25. Fiorino G, et al. Full interchangeability in regards to immunogenicity between the infliximab reference biologic and biosimilars CT-P13 and SB2 in inflammatory bowel disease. Inflamm Bowel Dis. 2017. 2018; 24:601-606
- 26. Fiorino G, et al. Letter: immunogenicity of infliximab originator vs. CT-P13 in IBD patients. Aliment Pharmacol Ther. 2017;46(9):903-905.
- Balsa A, et al. Drug immunogenicity in patients with inflammatory arthritis and secondary failure to tumour necrosis factor inhibitor therapies: the REASON study. Rheumatology (Oxford). 2018. 2018:57:688-693

Other peer-reviewed articles mentioned in this brochure

- 28. Radstake TR, et al. Formation of antibodies against infliximab and adalimumab strongly correlates with functional drug levels and clinical responses in rheumatoid arthritis. Ann Rheum Dis. 2009;68(11):1739-45.
- 29. Steenholdt C, et al. Severe infusion reactions to infliximab: aetiology, immunogenicity and risk factors in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2011;34(1):51-8.
- 30. Velayos FS, et al. A test-based strategy is more cost effective than empiric dose escalation for patients with Crohn's disease who lose responsiveness to infliximab. Clin Gastroenterol Hepatol. 2013;11(6):654-66.
- 31. Mulleman D, et al. Should anti-TNF-α drug levels and/or anti-drug antibodies be assayed in patients treated for rheumatoid arthritis? Joint Bone Spine. 2012;79(2):109-12.
- 32. Krieckaert CL, et al. Personalised treatment using serum drug levels of adalimumab in patients with rheumatoid arthritis: an evaluation of costs and effects. Ann Rheum Dis. 2015;74(2):361-8.
- 33. Nanda KS, et al. Impact of antibodies to infliximab on clinical outcomes and serum infliximab levels in patients with inflammatory bowel disease (IBD): a meta-analysis. Am J Gastroenterol. 2013;108(1):40-7.
- 34. Steenholdt C, et al. Individualised therapy is more cost-effective than dose intensification in patients with Crohn's disease who lose response to anti-TNF treatment: a randomised, controlled trial. Gut. 2014;63(6):919-27.
- 35. Wendling D, et al. Recommendations of the French Society for Rheumatology (SFR) on the everyday management of patients with spondyloarthritis. Joint Bone Spine. 2014;81(1):6-14.
- 36. Amiot A, et al. Therapeutic drug monitoring is predictive of loss of response after de-escalation of infliximab therapy in patients with inflammatory bowel disease in clinical remission. Clin Res Hepatol Gastroenterol. 2016;40(1):90-8.
- 37. Thomas SS, et al. Comparative Immunogenicity of TNF Inhibitors: Impact on Clinical Efficacy and Tolerability in the Management of Autoimmune Diseases. A Systematic Review and Meta-Analysis. BioDrugs. 2015;29(4):241-58.
- 38. Martelli L, et al. Cost-effectiveness of drug monitoring of anti-TNF therapy in inflammatory bowel disease and rheumatoid arthritis: a systematic review. J Gastroenterol. 2017;52(1):19-25.
- 39. Sandborn WJ. Crohn's disease evaluation and treatment: clinical decision tool. Gastroenterology. 2014;147(3):702-5.
- Melmed GY, et al. Appropriateness of Testing for Anti-Tumor Necrosis Factor Agent and Antibody Concentrations, and Interpretation of Results. Clin Gastroenterol Hepatol. 2016;14(9):1302-9.
- 41. Harbord M, et al. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 2: Current Management. J Crohns Colitis. 2017;11(7):769-784.
- 42. Feuerstein JD, et al. American Gastroenterological Association Institute Guideline on Therapeutic Drug Monitoring in Inflammatory Bowel Disease. Gastroenterology. 2017;153(3):827-834.
- 43. Ruiz-Argüello MB, et al. Adalimumab therapeutic drug monitoring test validated for measuring ABP 501 biosimilar. J Crohns Colitis. 2019;13(1):S265-266.
- 44. Ruiz-Argüello MB, et al. Validation of a therapeutic drug monitoring test to measure the adalimumab biosimilar SB5 in comparison with the reference adalimumab. J Crohns Colitis. 2019;13(1):S324.

Manual or Automated Mode

- Promonitor kits can be fully automated in any open ELISA processor, leading to an increase in productivity and reliability
- Grifols provides adapted protocols for Triturus and is continuously working on the adaptation to other instruments
- Tests can also be performed manually (2 hours 30 min or 1 hour 45 min) with minimal hands-on time (30 min) and the only platform required is a microplate reader

Tests can be fully automated in Triturus, SQII or any ELISA open processor

Biosimilars

Evaluation studies have demonstrated that Promonitor kits are able to quantify the following biosimilars and the corresponding anti-biosimilar antibodies ^{21, 24, 25, 26, 43, 44}:

Infliximab	Remsima/Inflectra (CT-P13) Flixabi (SB2)	Etanercept	Benepali (SB4) Erelzi (GP 2015)
Adalimumab	Amgevita (ABP 501) Imraldi (SB5) Hyrimoz (GP 2017)	Rituximab	Truxima (CT-P10)

Diagnostic Service

Grifols is offering TDM testing services in its facilities in Europe and North America. An easy-to-use sample collection and shipping service is provided (available in US). Physicians receive a complete report detailing results and reference values.

Derio, Spain

Current portfolio

Promonitor Infliximab
Promonitor anti-Infliximab
Promonitor Adalimumab
Promonitor anti-Adalimumab
Promonitor Etanercept
Promonitor anti-Etanercept
Promonitor Rituximab

Promonitor anti-Rituximab
Promonitor Golimumab
Promonitor anti-Golimumab
Promonitor Vedolizumab
Promonitor anti-Vedolizumab
Promonitor Ustekinumab
Promonitor anti-Ustekinumab

Promonitor Tocilizumab*

Promonitor anti-Tocilizumab*

Under development

*Already available for sale for RUO

Product registration and availability vary by country. Ask your local Grifols representative for more information.

